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Stabilization of intergrowth structures of the copper-oxide superconductors requires bond-length 
matching across the intergrowth interface. The influence of thermal-expansion mismatch on the stabili- 
zation of T/O vs T’ intergrowths in the La*-,Nd,CuOd system is demonstrated by firing the coprecipi- 
tated hydroxides/carbonates at SOO-1050°C. A larger thermal expansion for the (LaNd)-0 bond com- 
pared to that for the Cu-0 bond shifts the T/O-T’ phase boundary to a higher y value in La,-,Nd,Cu04 
as the synthesis temperature is increased. Above 950°C: an equilibrium phase diagram is obtained 
with a new line phase T” appearing at y = 0.5. The T” phase appears to be an ordered variant of the 
T’ phase and could be doped neither n-type nor p-type. o 1991 Academic PESS, ~nc. 

Introduction 

The known copper-oxide superconduc- 
tors all have intergrowth structures con- 
sisting of superconductively active CuO, 
sheets and other inactive layers. For exam- 
ple, the simplest prototype system La,CuO, 
has CuO, sheets alternating with double- 
rocksalt (Lao), layers along the c-axis as 

ICuO,ILaO-LaO[CuO,l , (1) 

where the vertical lines mark the interlayer 
interface. The stabilization of such an in- 
tergrowth requires bond-length matching 
across the intergrowth interface. The bond- 
length matching for the T/O phase of La, 
CuO, can be expressed in terms of the toler- 
ance factor 

t = (La-O)/.\/Z(Cu-0), (2) 

where La-O and Cu-0 are the equilibrium 
La-O and Cu-0 bond lengths. A t = 1 
will be realized for ideal matching. Although 
La,CuO, may have t close to unity at the 
firing temperature T = lOOo”C, the value of 
twill decrease from unity as the temperature 
is lowered, since the La-O bond has a larger 
thermal expansion than the Cu-0 bond; t = 
0.869 at room temperature (1)) as calculated 
from the sums of the empirical room-tem- 
perature ionic radii (2). A t < 1 means a 
bond-length mismatch between the CuO, 
and La0 layers at room temperature that 
places the La-O bonds under tension and 
the Cu-0 bonds under compression. In La, 
cl-Q+, 3 the bond-length mismatch at room 
temperature is partially relieved by (i) an 
ordering of the Cu(II)-3d hole into the anti- 
bonding ~*,2 _y2 orbitals to give a large octa- 
hedral-site axial ratio c/a > 1, (ii) the incor- 
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poration of some interstitial oxygen within 
the La202+, layers to give the composition 
La,CuO, +x, and (iii) a cooperative tilting of 
the CuO, octahedra to give a macroscopic 
transition from tetragonal to orthorhombic 
symmetry (3). 

Replacement of La3+ by other smaller 
Ln3+ = Pr-Gd reduces t < 1 sufficiently at 
the firing temperature that a rocksalt ar- 
rangement in the (LnO), layer can no longer 
provide bond-length matching to the CuO, 
layer. In this situation, the 02- ions of the 
(LnO), layers are displaced into the tetrahe- 
dral sites of the layer to produce a fluorite 
Ln-O,-Ln layer (4). The direct electrostatic 
repulsion between the 02- ions in the tetra- 
hedral sites keeps the fluorite Ln,O, layer 
stretched compared to that in the rocksalt 
(LnO), layer and relieves the bond-length 
mismatch. The T’ phase of Nd,CuO, has a 
layer sequence along the c-axis given by 

ICuO,INd-O,-NdlCuO,[. (3) 

We recently investigated (I) the phase re- 
lationships in the system La,_,Ln,,CuO, (Ln 
= Pr or Nd) by firing the component oxides 
at 1050°C. In the La,-,Nd,CuO, system, we 
found at room temperature (i) the ortho- 
rhombic T/O La,CuO, structure for 0 5 y 
I 0.35 and t 2 0.8658, (ii) the tetragonal 
T’Nd,CuO, structure for 1.2 I y 5 2.0 and 
t 5 0.8585, (iii) a line phase at y = 0.5 desig- 
nated as T” having an X-ray pattern similar 
to that of T’, (iv) a two-phase region con- 
sisting of TIO and T”for 0.35 5 y 5 0.5, and 
(v) a two-phase region consisting of T” and 
T’ for 0.55 < y < 1.2. The new T” phase was 
proposed to exhibit ordering of La3+ and 
Nd3+ cations within the (La,Nd),O, layers. 

In an attempt to understand more about 
the phase relationships as a function of syn- 
thesis temperature, we have investigated 
the La,-,Nd,CuO, system by firing the co- 
precipitated hydroxides/carbonates at 500- 
1050°C. Our results demonstrate, for the 
first time, the role of thermal-expansion mis- 

match on the stabilization of the intergrowth 
types. 

Experimental 

La3+ Nd3+ and Cu2+ were coprecipi- 
tated a; pH 7.; as hydroxides and carbon- 
ates by adding K2CO3 (3) into a nitric acid 
solution containing required quantities of 
the ions. The fine precipitate obtained was 
filtered, washed several times with distilled 
water and finally with acetone, and dried at 
120°C in an air oven. The precursor powder 
was then fired in air progressively from 500 
to 1050°C for about 15 hr at each tempera- 
ture at an interval of 50-lOO”C, with inter- 
mediate grindings to obtain La,-,Nd,CuO, . 
After firing at each fixed temperature for 
about 15 hr, the sample was cooled and char- 
acterized by X-ray powder diffraction re- 
corded at room temperature with a Philips 
diffractometer and Cuba radiation. Ther- 
mogravimetric analysis was carried out with 
a Perkin-Elmer Series 7 Thermal Analysis 
System. The oxygen content was deter- 
mined by the wet iodometric procedure (4); 
all the phases showed an oxygen content of 
4.00 It 0.02. 

Results and Discussion 

The decomposition of the hydroxide/car- 
bonate precursors is nearly complete 
around 600°C and gives La,-,Nd,CuO, as 
revealed by thermogravimetric analysis 
data (Fig. 1) and X-ray diffraction (Fig. 2). 
The phases identified by room-temperature 
X-ray diffraction after firing the precursors 
at different temperatures are shown in Fig. 
3. The stability of the T/O phase field is 
progressively increased to higher y values 
in La,-,Nd,CuO, as the synthetic tempera- 
ture is increased. Since the thermal expan- 
sion of the Ln-0 bond is larger than that of 
the Cu-0 bond, an increase in the synthetic 
temperature reduces the bond-length mis- 
match and stabilizes the T/O structure. If 
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FIG. 1. TGA plot recorded in air at 1”Cimin for the 
coprecipitated hydroxide/carbonate of La&u stoichi- 
ometry. 

there were no difference in the thermal 
expansions of the two bonds, then one 
would anticipate the phase boundary to oc- 
cur at a constant y value irrespective of the 
synthesis temperature. 

The formation of the T’ phase is extended 
to lower y values in La,-,Nd,CuO, as the 
synthesis temperature is lowered since the 
thermal-expansion mismatch destabilizes 
the TIO phase. A two-phase region con- 
sisting of TIO and T’ phases separates the 
TIO and T’ phase field. This two-phase re- 
gion has a constant width of Ay = 0.2 at 
all temperatures below 850°C; above 850°C 
cation mobility introduces a new T” phase 
(see below). Extrapolation of our data in 
Fig. 3 to lower temperatures leads to the 
prediction that La,CuO, can be stabilized in 
the T’ structure if the synthesis is carried 
out below 425°C. Although we could obtain 
a two-phase mixture consisting of T/O and 
T’La,CuO, at 5Oo”C, we could not achieve 
single-phase T’La,CuO, as our procedure 
needs a firing temperature of at least 500°C. 
However, Chou et al. (7) have shown that 
T’La,CuO, can be obtained by reducing 
T/O La,CuO, with hydrogen around 300°C 
followed by reoxygenation below 400°C. 
This observation lends further support to 
our demonstration that the thermal-expan- 
sion mismatch influences the stabilization of 
TIO vs T’ intergrowths. 

Above 850°C the phase relationship is 
complicated by the stabilization of a new T” 
phase-a line phase La,NdCu,O,-at y = 
0.5 within the TIO phase field. The T” phase 
has an X-ray diffraction pattern similar to 
that of T’Nd,CuO,, but with slightly larger 
a and c parameters as expected from the 
larger size of La3+ (1). It could be doped; 
neither n-type norp-type all attempts to sub- 
stitute Sr2+ or Ce4+ for La3+ or Nd3+ re- 
sulted in either Sr2+-doped TIO and un- 
doped T’ phases or Ce4+-doped T’ and un- 
doped TIO phases. We have suggested (1) 
previously that the T” phase may have an 
intralayer ordering of Laj+ and Nd3+ ions 
within the (La,Nd),O, layers. Although neu- 
tron diffraction data obtained by Lightfoot 
et al. (8) at Argonne National Laboratory 
on our samples of T” La,,,Ln,,,CuO,(Ln = 
Pr or Nd) indicate the presence of all the 
02- ions in the tetrahedral sites as in 
T’Nd,CuO, , no cation ordering could be de- 
tected. Since both X-ray and neutron dif- 
fraction can detect only long-range order, it 
appears that the cation ordering in the T” 
phase is short-range and subtle; a short- 
range ordering is entirely reasonable in view 
of a smaller size difference between La3+ 
and Nd3+ ions. We suspect that ordering 
within an individual layer may be quite long- 
range, but that ordering between layers does 
not occur. 

Cation ordering is also supported by our 
present experiments, which show that the 
T” phase is distinct from the normal T 
phase. The occurrence of a normal T’ phase 
at Y = 0.5 is not expected within the T/O 
phase field (Fig. 3) unless an extra stabilizing 
force introduces it. We believe that the cat- 
ion ordering at La: Nd = 3 : 1 within the 
(La,Nd),O, layers lowers the net energy of 
the system that stabilizes the T” phase rela- 
tive to the T/O phase. Furthermore, the T” 
phase is accessible only when the synthesis 
temperature is above 850°C. A higher syn- 
thesis temperature provides a higher mobil- 
ity of the cations and, hence, the possibility 
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FIG. 2. X-ray powder diffraction patterns recorded at room temperature after firing the coprecipitated 
hydroxide/carbonate of La,,,Ndo,5 stoichiometry at (a) 600°C (T’), (b) 700°C (T’ + T/O), (c) 800°C 
(T/O), (d) 900°C (T/O + T”), and (e) 1050°C (7”‘). The hkl values within the parentheses are for T’ or 
T” phases and those without the parentheses are for the T/O phase. 
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FIG. 3. Phase relationships for the system La,-,Nd, 
Cu04 obtained by firing the coprecipitated hydroxide/ 
carbonate progressively at higher temperatures fol- 
lowed by cooling to room temperature. The thickly 
shaded area around 850-1050°C and y = 0.5 represents 
a nonequilibrated region consisting of T/O, T’, and T”. 

of cation ordering on cooling. Sufficient cat- 
ion mobility leads to an equilibrium phase 
diagram at 1050°C. The equilibration tem- 
perature is lowered to 950°C around y = 
0.5 (Fig. 3) due to the extra stabilization 
associated with the T” phase. In Fig. 3, the 
thickly shaded region around 850- 1050°C 
and y = 0.5 represents a nonequilibrated 
region in which the existence of T’, TIO, 
and T” is found. Once phase equilibrium 
is achieved around 105o”C, the equilibrium 
phase diagram for 1050°C is retained down 
to room temperature without disproportion- 
ation into T/O and T’. Below T = 85o”C, the 
cations do not have sufficient mobility to 
order. The determination of the order-di- 
sorder transition temperature by diffraction 
techniques would be difficult in this case 
since any ordering appears to be short- 
range. 

More interestingly, the composition 
La,,,Nd,&uO, can be stabilized as single- 

phase T’(<625”C), T/O (775-85O”C), or T” 
(>95o”C) depending upon the synthesis tem- 
perature (Figs. 2 and 3). In view of these 
experiments at ambient pressure in air, the 
recent results of Bringly et al. (9) on the 
types of intergrowths in La,,,Nd,.,CuO,+X 
as a function of oxygen pressure can be un- 
derstood. They have stabilized the TIO 
phase La,,Nd,&uO,.,, by firing the copre- 
cipitated hydroxides at 910°C and 400 bar 
0, and T” (identified by them as T’) 
La~.Wo.&uO 3.98 by annealing at 1050°C in 
air followed by quenching. Since the compo- 
sition La,,,Nd,,,CuO, lies close to the T/O 
phase boundary at 900°C (Fig. 3), the appli- 
cation of moderate oxygen pressure would 
stabilize single-phase TIO; high oxygen 
pressure increases the oxygen content 
above 4.0, which oxidizes the CuO, sheets 
and therefore decreases the Cu-0 bond- 
length and shifts the T/O phase boundary to 
higher y values by relieving the bond-length 
mismatch. For a relatively short firing time 
at 9Oo”C, there would be no formation of 
the T” phase since it needs sufficient cation 
mobility and equilibration; however, at 
1050°C the T” phase would be rapidly 
formed. 
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